
ETGG1801 Lab4: if and while statements Points: 30
Assigned: 9/11/2017 Due: 9/22/2017 @ 8am 9/26/2017 @ 8am

Note: In this lab, I want you to complete 2 of these and a part of a 3rd one. If you successfully finish all 3, you get bonus
points!

1. (15 points) Create a new file called monte_carlo.py. This program should load the Great Britain image on
ssugames. There are two parts:

a. part A:
i. Calculate and print precisely how many sea (green) and land (red) pixels are in the image by

looking at every single pixel.
ii. You can access a pixel’s color like this1:

color = surf.get_at((x, y))
red = color[0] # 0 – 255
green = color[1] # 0 – 255
blue = color[2] # 0 - 255

iii. Print out these values:
1. The time it took to do this operation (in seconds)
2. The number of land pixels (I counted 150,207)
3. The number of sea pixels (I counted 329,729)
4. The number of pixels examined (I counted 479,938)

b. part B:
i. Perform a Monte Carlo estimate of the land / sea values. A monte

carlo simulation (in this context) is when you guess a random pixel
position and keep track of the contents (land or sea). Then estimate
the total number of land pixels by taking n percent of the total image
area (where n is the fraction of land pixels found so far compared to
the number of pixels looked at). You can determine the error (as
compared to the correct number) with this formula:

𝑒𝑟𝑟𝑜𝑟𝑆𝑒𝑎 =
|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑒𝑎 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑆𝑒𝑎|

𝑡𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝑠

(The vertical bars indicated absolute value – use the abs python function)

ii. Run the monte carlo simulation until you have an error of 0.5% of less for land and sea. Then
print out these values:

1. The time it took to do the Monte Carlo simulation (usually this was about 1/10 the time
of the full test)

2. The estimated number of land and sea pixels and the error value (both of which should
be under 0.5%)

3. The number of pixels examined (I’d usually have to look at only about 20 pixels to
determine this!!)

2. (15 points) Create a new file called checkerboard.py. This program should:
a. Generate random values for each of these quantities (using random.xyz functions)

i. window_width (800-1200)
ii. window_height (600-900)

iii. number_of_columns (5 – 15)
iv. number_of_rows (6 – 12)

1 color is a tuple in python (immutable arrays / lists in other languages). The square brackets are used to index a single element of
this tuple. We’ll explore this in much greater detail in section 6.

v. colorA (make it light-ish, but the RGB values
should be random)

vi. colorB (similar to colorA, but dark-ish)
vii. frequency (0.1 – 0.9) [i.e. 10% - 90%]

b. Create a window of the chosen size.
c. Draw a checkerboard pattern. Hint: you might find

the mod operator (%) helpful…
d. On approximately frequency % of the squares, draw a

token, which is one of the 12 pieces on the pieces.png
image on ssugames. Center this image in the square.

e. Draw the frequency you used on top of the screen.
f. Keep the window open for 3 seconds then shut down.

3. (15 points) Create a new file called scroller.py. This program should:
a. Create an 800x600 window.
b. Load the pond and boid image from ssugames. In code, scale it to be the same size as the window

(pygame.transform.scale)
c. Make the boid move smoothly2 in one direction until either:

i. It hits a wall – in this case, “bounce” in the opposite direction
ii. 1 second passes – in this case, make the boid choose a new random direction (up, down, left, or

right).
d. Make the boid face in the direction it’s moving (use the pygame.transform.rotate function)
e. Make the background slowly scroll to the right. Use a combination of the blit command and the

pygame.transform.flip (to draw a mirror image) so the background appears to be seamless.
f. The program should run for 20 seconds and then shut down.
g. Here’s an example of my solution runn ing: https://youtu.be/kXJyYA3AGRs

2 For now, get it to look smooth on your machine. In the next section, we’ll explore a way to make things move at the same rate on
any machine.

